Stereospecific synthesis of bisdihydroxylated dicyclopentadiene Emine Salamci* and Ertan Sahin

Department of Chemistry, Faculty of Arts and Sciences, Atatürk University, 25240 Erzurum, Turkey

The first bisdihydroxylation of dicyclopentadiene (3) with OsO₄–NMO gave the *exo*-tetrol 4a as a sole product in one step. The stereoselectivity in bisdihydroxylation of **3** has been determined by an X-ray diffraction analysis of the compound **4a** and tetraacetate **4b**.

Keywords: cyclitols, crystal structure, bisdihydroxylation, dicyclopentadiene

Recently, polycyclitols have been used as fused (annulated) polycarbocyclic systems with a dense hydroxyl functionalisation.1,2 A typical example is the hydrindane system **1,** which can be considered as an annulated conduritol 2 or carbasugar¹⁻³ (Scheme 1). Cyclitols have generated a great deal of synthetic interest as they usually possess a wide variety of interesting biological activities.

In a previous study, Dryuk *et al.*4a synthesised a trans tetrol from the diepoxide of dicyclopentadiene (**3**) in many steps and in a low total yield. Sanderson *et al.*4b also synthesised a mixture of a tetraacetate and diacetate by treatment of dicyclopentadiene (**3)** with an excess of acetic anhydride in the presence of nickel borate at 100°C in a yield4b of 76%. In this study, we describe an efficient and convenient procedure for the preparation of *cis*-tetrol **4a** (Scheme 2). The hydroxylation was performed at room temperature with a catalytic amount of $OsO₄$ and N-methylmorpholine N-oxide (NMO) as the cooxidant. The tetrol was converted to the tetraacetate **4b** for further characterisation in 93% overall yield.

Results and discussion

Osmium tetroxide-catalysed dihydroxylation of olefins is one of the most reliable methods for the preparation of vicinal diols.5-7 Four products might be formed by the *cis*hydroxylation of dicyclopentadiene (**3**). Surprisingly, osmium tetroxide-catalysed bisdihydroxylation of dicyclopentadiene (**3**) resulted in the formation of a single tetrol derivative **4a** in 95% yield. The tetrol **4a** was converted to the acetate derivative **4b** for further characterisation (Scheme 2).

¹H and ¹³C NMR spectra of **4a** and its acetate derivative **4b** show that four oxygen functionalities were incorporated to dicyclopentadiene **(3)**. The alkoxy C(H)–O protons of tetrol gave three signals at δ 3.88, 3.79(2H), 3.72. The *endo*configuration of H-8 and H-9 were also elucidated by NMR analysis that these two protons at δ 3.88 and 3.72 aroused only as an AB system $(J = 4.8 \text{ Hz})$ without further coupling with similar systems⁸ confirmed the *endo*-position of these two protons. However, 1H NMR coupling constants of H-3 and H-4 protons did not reveal the stereochemistry of the two –OH groups. These coupling constants vary from 4.0 Hz to 6.2 Hz. The *cis*- and *trans*-coupling constants of five-membered rings are too close to each other to decide the stereochemistry based on coupling constants. Therefore, we decided to perform an X-ray analysis of **4a** and its acetate derivate **4b** to elucidate the stereochemistry.

Catalytic bisdihydroxylation of dicyclopentadiene **(3)** proceeded with complete *exo*-face selectivity in case of tricyclic *endo*-allylic alcohol^{2a} as well as norbornadiene⁹ and norbornene derivatives.2b,10

The molecular structures of **4a** with the atom labeling are shown in Fig.1. Compound **4a** crystallises in monoclinic space group P21/n (no: 14) with eight molecules in the unit cell. The asymmetric unit contains two crystallographically

Scheme 2

Fig. 1 ORTEP view of **4a** with displacement ellipsoids drawn at the 50% probability level.

independent molecules with nearly identical geometries.

Hydroxyl geometries are as expected, with corresponding exactly to typical single bond lengths [C2–O4, 1.425(3) Å; C2'–O4', 1.418(3) Å; C1–O3 1.417(3) Å; C1'–O3' 1.428(3) Å]. All the hydroxylic H atoms are in a hydrogen-bonding environment. The average $O \cdot O$ distance is 2.858 Å, the range is 2.732(4)–3.043(4) Å. These values agree with those given by Jeffrey and Saenger.¹¹ The crystal structure is stabilised by an extensive network of intermolecular hydrogen bonds.

In the bicyclo[2.2.1]heptane skeleton, the two fivemembered rings have an envelope conformation. In the present * Correspondent. E-mail: esalamci@atauni.edu.tr case, only atom C5 is non-planar with the other atoms of the

Fig. 2 ORTEP view of **4b** with displacement ellipsoid drawn at the 50% probability level.

ring. Maximum deviations from the mean planes delivered by the atoms C3/C2/C1/C4 and C3/C6/C7/C4 are 0.865 Å and 0.886 Å, respectively. The other five-membered ring which shares a common C–C bond $IC6-C7 = 1.572(4)$ Ål also has the envelope conformation. The C9 atom deviates $0.880(\text{\AA})$ from the mean plane (C6/C7/C10/C8).

The molecular structure of **4b** with the atom labeling is shown in Fig. 2. Compound **4b** crystallises in monoclinic space group $C2/c$ (no: 15) with $Z = 8$. It contains a central tricyclic dicyclopentadiene fragment like **4a**. The all*cis* stereochemistry of the –OAc groups was determined unequivocally. It has three five-membered rings and all have the envelope conformation; C7 atom deviates 0.879(3) and $0.895(3)$ Å from the planes A(C1/C2/C3/C6) and B(C3/C4/ C5/C6), respectively; C12 atom deviates 0.618(3) Å from the planes A(C4/C5/C10/C11). The angles between A, B, C planes are as follows; $A/B = 64.6(2)^\circ$, $A/C = 63.1(2)^\circ$ and $B/\hat{C} = 52.4(2)$ °.

The O=C bond lengths agree with the values reported in the literature⁹ (1.197(6) Å in (2RS, 3SR, 5RS, 6SR)bicyclo[2.2.1]heptane-2,3,5,6-tetryl tetraacetate).

In summary, we have achieved the stereospecific synthesis of the *exo*-tetrol **4a** in one step starting from the readily available dicyclopentadiene **(3)** at room temperature and in high yield. The stereochemistry of the tetrol **4a** and the tetraacetate **4b** was elucidated by the single crystal X-ray diffraction analysis.

Experimental

General

IR spectra were recorded with a Mattson 1000 FT-IR spectrometer. The ¹H and ¹³C NMR spectra were recorded on the Varian Gemini 400 (100) MHz spectrometer and are reported in δ units with SiMe₄ as an internal standard. All column chromatography was performed on silica gel (60 mesh, Fluka). The TLC was carried out on Merck 0.2 mm silica gel 60 F_{254} analytical aluminum plates.

Synthesis of (3R(S),4S(R),8R(S),9S(R))-3,4,8,9-tetraacetoxy-tricyclo [5.2.1.02,6]decane (**4b**): A 100 ml three-necked, round-bottomed flask, equipped with a magnetic stirrer and a nitrogen inlet, was charged with NMO 9.19 g (68.10 mmol), water 5 ml, and acetone 15 ml. To this solution were added *ca*. OsO₄ 204 mg (0.816 mmol) and dicyclopentadiene **(3)** 3.0 g (22.70 mmol). The resulting mixture was stirred vigorously under nitrogen at room temperature. After 2 days, the reaction was complete. Sodium hydrosulfite (2.0 g) and 2.0 g of Florisil slurried in $\overline{5}$ ml of water were added, the slurry was stirred for 30 min. and the mixture was filtered through a pad of celite 0.5 g in a 50 ml sintered-glass funnel. The celite cake was washed with acetone $(4 \times 40 \text{ ml})$. The mixture was evaporated and the residue was purified by column chromatography on silica gel (150 g) elution with methanol/ethyl acetate (1/3) and afforded tetrol **4a** (4.3 g, 95%). Tetrol **4a** was converted to the corresponding acetate **4b**. To a magnetically stirred solution of tetrol **4a** (4.3 g, 21.5 mmol) in 15 ml of pyridine was added Ac2O (15.35 g, 0.15 mol). The reaction mixture was stirred at room temperature for 24 h. The mixture was cooled to 0° C and 300 ml of 1 N HCl solution added, and the mixture

was extracted with ether (5×60 ml). The combined organic extracts were washed with $NaHCO₃$ solution (30 ml) and water (30 ml) and then dried ($Na₂SO₄$). Removing of the solvent under reduced pressure and recrystallisation of the product from methylene chloride–hexane gave **4b** in nearly quantitative yield (7.76 g, 21.09 mmol), colourless crystals, m.p. $151-153$ °C. ¹H NMR (400 MHz, CDCl₃) δ 5.27 (br. q, *J* = 4.5 Hz, 1H, H-4), 5.04 (m, 3H, H-3, H-8, H-9), 2.72 (m, 1H, H-6), 2.52 (dt, *J* = 12.4, *J* = 5.5 Hz,1H, H-2), 2.38 (d, *J* = 4.0 Hz, 1H, H-1 or H-7), 2.19 (d, *J* = 4.0 Hz, 1H, H-1 or H-7), 2.14 (dt, *J* = 12.4, 10.2 Hz, one of H-10), 2.02 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.88 (m, 2H, two H-5), 1.49 (d, *J* = 10.2 Hz, 1H, one of H-10). 13C NMR (100 MHz, CDCl3) δ 20.8, 20.9, 21.0, 21.1, 28.4, 38.8, 40.3, 43.8, 45.1, 47.0, 71.8, 73.0, 77.6, 169.9, 170.0, 170.2, 170.4. IR (KBr): 2960, 1738, 1637, 1373, 1259, 1048, 902, 602 cm-1. Analysis calculated for $C_{18}H_{24}O_8$: C 58.7, H 6.6%; found: C 58.9, H 6.5%.

Synthesis of (3R(S),4S(R),8R(S),9S(R))-3,4,8,9-tetrahydroxytricyclo[5.2.1.02,6]decane (**4a**): (3R(S),4S(R),8R(S),9S(R))-3,4,8,9- Tetraacetoxy-tricyclo[5.2.1.02,6]decane (**4b**) (2.0 g, 5.43 mmol) was dissolved 200 ml of absolute methanol. While dry $NH₃$ was passed through solution, the mixture was stirred for 8 h at room temperature. Evaporation of methanol and formed acetamide gave (3R(S), 4S(R), 8R(S),9S(R))-3,4,8,9-tetrahydroxy-tricyclo[5.2.1.02,6]decane (**4a**) in nearly quantative yield (1.08 g, 5.40 mmol); m.p. 84–86°C from absolute ethanol/acetone. **4a:** ¹H NMR (400 MHz, D₂O) δ 3.88 (quasi t, 1H, H-4, *J* = 5.7 Hz), 3.79 (m, 2H, H-9 or H-8 and H-3, A part of AB system), 3.72 (d, 1H, H-9 or H-8, *J* = 4.8 Hz, B part of AB system), 2.45 (m, 1H, H-6), 2.21 (ddd, *J* = 11.7, 4.5, 4.5 Hz, 1H, H-2), 2.11 (d, *J* = 5.1 Hz, 1H, H-1), 1.94 (d, *J* = 5.1 Hz, one of H-7), 1.71 (d, 1H, one of H-10, $J = 10.6$ Hz), 1.65 (ddd, 1H, one of H-5, *J* = 14.3, 5.5, 5.5 Hz), 1.48 (ddd, 1H, one of H-5, *J* = 14.3, 9.5, 7.0 Hz), 1.24 (d, 1H, one of H-10, *J* = 10.6 Hz). 13C NMR (100 MHz, D2O) δ 30.0, 35.9, 39.6, 45.7, 47.1, 48.9, 70.0, 70.6, 72.7, 76.1. IR (KBr): 3411, 2956, 1662, 1395, 1053, 962,585 cm-1. Analysis calculated for $C_{10}H_{16}O_4$: C 60.0, H 8.1%; found: C 59.8, H 8.2%

X-Crystal structure determination: Diffraction experiment was carried out on a four-circle Rigaku R-AXIS RAPID-S diffractometer equipped with a two-dimensional area IP detector. The graphitemonochromatised Mo K α radiation ($\lambda = 0.71073$ Å) and oscillation scans technique with $\Delta \omega = 5^{\circ}$ for one image were used for data collection. Images for (**4a**) and (**4b**) was taken successfully by varying *ω* with three sets of different *χ* and *φ* values. For each compounds the 108 images for six different runs covering about 99.7% of the Ewald spheres were performed. The lattice parameters were determined by the least-squares methods on the basis of all reflections with $F^2 > 2\sigma(F^2)$. Integration of the intensities, correction for Lorentz and polarisation effects and cell refinement was performed using CrystalClear software¹². The structures were solved by direct methods (SHELXS-97)13 and non-H atoms were refined by full-matrix least-squares method with anisotropic temperature factors (SHELXL-97).13

Crystal data **4a:** C10H16O4, monoclinic, P21/n; *a* = 7.6789(2), $b = 12.1195(2), c = 20.0744(7)$ Å, $\beta = 95.02(2)$ °; $V = 1861$ Å³; $Z = 8$; calculated density: 1.43 mg/m3; absorption coefficient: 0.110 mm−1; *F*(000): 864; θ range for data collection 2.9–30.6°; completeness to θ : 30.6°, 99.7%; refinement method: full-matrix least-square on F^2 ; data/restraints/parameters: 3728/0/253; goodness-of-fit on *F*2: 1.109; final *R* indices $[I>2\sigma(I)]$: $R_1 = 0.080$, $wR_2 = 0.112$; largest diff. peak and hole: 0.807 and 0.335 eÅ−3; CCDC-626645.

Crystal data **4b:** $C_{18}H_{24}O_8$ Monoclinic, C_{2}/c , $a = 15.910(3)$, $b = 14.578(2), c = 16.578(4), \beta = 94.370(4), V = 3902 \text{ Å}^3; Z = 8;$ calculated density: 1.25 mg/m3; absorption coefficient: 0.099 mm−1; *F*(000): 1568; θ range for data collection 2.4–30.6°; completeness to θ : 30.6°, 99.8%; refinement method: full-matrix least-square on F^2 ; data/restraints/parameters: 3178/0/240; goodness-of-fit on *F*2: 1.166; final *R* indices $[I>2\sigma(I)]$: $R_1 = 0.089$, $wR_2 = 0.130$; largest diff. peak and hole: 0.164 and 0.144 eÅ−3; CCDC-626644.

The authors are indebted to the Department of Chemistry (Atatürk University) for financial support of this work. Furthermore, we thank Professor Dr Hasan Secen for his helpful discussion.

Received 20 November 2006; accepted 25 January 2007 Paper 06/4308

64 JOURNAL OF CHEMICAL RESEARCH 2007

References

- 1 G. Mehta and S.S. Ramesh, *Tetrahedron Lett.*, 2001, **42,** 1987.
- 2 (a) G. Mehta and D.S. Reddy, *Tetrahedron Lett.*, 1999, **40,** 9137;
- (b) G. Mehta and N. Mohal, *Tetrahedron Lett.*, 1999, **40,** 5791; (c) G. Mehta and S.S. Ramesh, *Tetrahedron Lett.*, 2003, **44,** 3105; (d) G. Mehta and N. Mohal, *Tetrahedron Lett.*, 2001, **42,** 4227; (e) G. Mehta, P. Talukdar and N. Mohal, *Tetrahedron Lett.*, 2001, **42,** 7663.
- 3 (a) M. Balci, *Chem. Rev.*, 1981, **81,** 91; (b) M. Balci, Y. Sütbeyaz and H. Seçen, *Tetrahedron*, 1990, **46,** 3715; (c) H. Seçen, E. Salamci, Y. Sütbeyaz and M. Balci, *Synlett*, 1993, 609; (d) E. Salamci, H. Seçen, Y. Sütbeyaz and M. Balci, *J. Org. Chem.*, 1997, **62,** 2453; (e) M.S. Gültekin, M. Celik and M. Balci, *Curr. Org. Chem.*, 2004, **8,** 1159; (f) M.S. Gültekin, E. Salamci and M. Balci, *Carbohydr. Res.*, 2003, **338,** 1615; (g) Y. Kara, M. Balci, S.A. Bourne and W.H. Watson, *Tetrahedron Lett.*, 1994, **35,** 3349.
- 4 (a) G.V. Dryuk, L.I. Kas'yan, A.M. Korchagina and G.M. Kamenyuka, *USSR. Voprosy Khimicheskoi Tekhnologii*, 1989, **90,** 78; (b) J.R. Sanderson and L.W. Watts, 1985, U.S., 5pp. CODEN: USXXAM US 4528396 A 19850709 Patent.
- 5 H.C. Kolb, M.S. VanNieuwenhze and K.B. Sharpless, *Chem. Rev.*, 1994, **94,** 2483.
- 6 V. VanRheenen, R.C. Kelly and D.Y. Cha, *Tetrahedron Lett.*, 1976, **23,** 1973.
- 7 K. Kawazoe, Y. Furusho, S. Nakanishi and T. Takata, *Synth. Commun.*, 2001, **31**, 2107.
- 8 A. Baran, C. Kazaz and H. Seçen, *Tetrahedron*, 2004, **60,** 861.
- 9 R.A. Ustabap, U. Coruh, M. Yavuz, E. Salamci and E.M. Vazquez-Lopez, *Acta Crystallogr*., 2006, **E62**, O1149.
- 10 (a) A. Menzek and M. Karakaya, *Turk. J. Chem.*, 2004, **28,** 141; (b) A. Menzek and M. Gökmen, *Helv. Chim. Acta* 2003, **86,** 324.
- 11 G.A. Jeffrey and W. Saenger, *Hydrogen Bonding in Biological Structures*, Springer-Verlag, Berlin, 1991.
- 12 Rigaku (2005), *CrystalClear*, Version 1.3.6. Rigaku American Corporation, 9009 New Trails Drive, The woodlands, TX 77381-5209, USA.
- 13 G.H. Sheldrick, SHELXS-97 and SHELXL-97, University of Göttingen, Germany, 1997.